Ignacy Misztal

Learn More
The first national single-step, full-information (phenotype, pedigree, and marker genotype) genetic evaluation was developed for final score of US Holsteins. Data included final scores recorded from 1955 to 2009 for 6,232,548 Holsteins cows. BovineSNP50 (Illumina, San Diego, CA) genotypes from the Cooperative Dairy DNA Repository (Beltsville, MD) were(More)
Dense molecular markers are being used in genetic evaluation for parts of the population. This requires a two-step procedure where pseudo-data (for instance, daughter yield deviations) are computed from full records and pedigree data and later used for genomic evaluation. This results in bias and loss of information. One way to incorporate the genomic(More)
Meteorological data (1993 to 2004) from 2 public weather stations in Phoenix, Arizona, and Athens, Georgia, were analyzed with test day milk yield data from herds near weather stations to identify the most appropriate temperature-humidity index (THI) to measure losses in milk production due to heat stress in the semiarid climate of Arizona and the humid(More)
Currently, genomic evaluations use multiple-step procedures, which are prone to biases and errors. A single-step procedure may be applicable when genomic predictions can be obtained by modifying the numerator relationship matrix A to H = A + A(Delta), where A(Delta) includes deviations from expected relationships. However, the traditional mixed model(More)
Genome-wide genetic evaluation might involve the computation of BLUP-like estimations, potentially including thousands of covariates (i.e., single-nucleotide polymorphism markers) for each record. This implies dense Henderson's mixed-model equations and considerable computing resources in time and storage, even for a few thousand records. Possible computing(More)
Our data included 119,205 first-parity, test-day records from 15,002 Holsteins in 134 Georgia farms with temperature and humidity data from 21 weather stations throughout Georgia. The test-day model included the effects of herd test date, days-in-milk (DIM) classes, age, milking frequency, general additive effect, random regression on the heat-humidity(More)
The incorporation of genomic coefficients into the numerator relationship matrix allows estimation of breeding values using all phenotypic, pedigree and genomic information simultaneously. In such a single-step procedure, genomic and pedigree-based relationships have to be compatible. As there are many options to create genomic relationships, there is a(More)
A common problem for genome-wide association analysis (GWAS) is lack of power for detection of quantitative trait loci (QTLs) and precision for fine mapping. Here, we present a statistical method, termed single-step GBLUP (ssGBLUP), which increases both power and precision without increasing genotyping costs by taking advantage of phenotypes from other(More)
The primary aim of this study was to evaluate the phenotypic and genetic trends for stillbirth in Danish Holsteins. Trends of calving difficulty and calf size were also evaluated. The second aim was to compare predicted transmitting abilities (PTA) of sires for stillbirth using a linear and a threshold model. Direct and maternal genetic effects were modeled(More)
Records of on-test ADG of Large White gilts were analyzed to estimate variance components of direct and associative genetic effects. Models included the effects of contemporary group (farm-barn-batch), birth litter, pen group, and direct and associative additive genetic effects. The area of each pen was 14 m2. The additive genetic variance was a function of(More)