Ignacio R. Matías

Learn More
The deposition of an overlay of higher refractive index than the cladding in a Long Period Fiber Grating (LPFG) permits to improve the sensitivity to ambient refractive index changes in a great manner. When the overlay is thick enough, one of the cladding modes is guided by the overlay. This causes important shifts in the effective index values of the(More)
We obtain lossy mode resonances by the coupling of light from a multimode optical waveguide to a TiO(2)/PSS coating deposited with the layer-by-layer method. The resonances can be generated in a wide wavelength range from the ultraviolet to the infrared region of the optical spectrum. The transmission spectrum is monitored as a function of the number of(More)
Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to(More)
The incremental deposition of a thin overlay on the cladding of a long-period fiber grating (LPFG) induces important resonance wavelength shifts in the transmission spectrum. The phenomenon is proved theoretically with a vectorial method based on hybrid modes and coupled mode theory, and experimentally with electrostatic self-assembly monolayer process. The(More)
The electrostatic self-assembly monolayer process has been utilized for what is believed to be the first time to deposit quarter-wavelength stacks on the end faces of cleaved and polished optical fibers. Standard multimode optical fibers as well as single-mode optical fibers were used as substrates with different coating materials to fabricate broadband(More)
The ionic self-assembly monolayer process is a novel technique that has already been used to deposit ultrathin films on glass, polymer, and silicon substrates of different sizes and shapes. This technique is presented as a new tool with which to apply coatings on optical fibers. A nanometer-scale interferometric cavity was built up at the end of an optical(More)
Tin doped indium oxide (ITO) coatings fabricated onto D-shaped optical fibers are presented as the supporting medium for Lossy Mode Resonances (LMRs) generation. The characteristic geometry of ITO-coated D-shaped optical fibers enables to observe experimentally LMRs obtained with both TM and TE polarized light (LMR(TM) and LMR(TE)). This permits to obtain a(More)
It was proved that the deposition of an overlay material onto a long-period fiber grating causes important shifts in the wavelengths of the typical attenuation bands that are caused by coupling between cladding and core modes [Opt. Lett. 27, 682 (2002)]. A theoretical model for analyzing a multilayer cylindrical waveguide is presented that permits the(More)
In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates.(More)
This article introduces a privacy framework for Smart Homes, supporting individuals roaming freely in pervasive computing environments. Such environments typically are equipped with different kinds of sensors and tracking devices for context-aware service provisioning. While on the one hand, people want to take advantage of the comfort and added value of(More)