Ignacio José García del Amo

Learn More
The Particle Swarm Optimization (PSO) algorithm has been successfully applied to dynamic optimization problems with very competitive results. One of its best performing variants, the mQSO is based on an atomic model, with quantum and trajectory particles. This work introduces a new version of this algorithm which uses heuristic rules for improving its(More)
The best performing methods for Dynamic Optimization Problems (DOPs) are usually based on a set of agents that can have different complexity (like solutions in Evolutionary Algorithms, particles in Particle Swarm Optimization, or metaheuristics in hybrid cooperative strategies). While methods based on low-complexity agents are widely applied in DOPs, the(More)