Learn More
In this paper, we propose a robust wavelet domain method for noise filtering in medical images. The proposed method adapts itself to various types of image noise as well as to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The(More)
BACKGROUND The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the(More)
This paper presents a new wavelet-based image denoising method, which extends a "geometrical" Bayesian framework. The new method combines three criteria for distinguishing supposedly useful coefficients from noise: coefficient magnitudes, their evolution across scales and spatial clustering of large coefficients near image edges. These three criteria are(More)
We propose a novel imaging system useful in dermatology, more precisely, for the follow-up of patients with an increased risk of skin cancer. The system consists of a Pentium PC equipped with an RGB frame grabber, a three-chip charge coupled devices (CCD) camera controlled by the serial port and equipped with a zoom lens and a halogen annular light source.(More)
Many implementations of electroencephalogram (EEG) dipole source localization neglect the anisotropical conductivities inherent to brain tissues, such as the skull and white matter anisotropy. An examination of dipole localization errors is made in EEG source analysis, due to not incorporating the anisotropic properties of the conductivity of the skull and(More)
Image-scrambling schemes are designed to render the image content unintelligible. Wyner has proposed an elegant 1D scrambling scheme without bandwidth expansion, making use of the discrete prolate spheroidal sequences (DPSS). The DPSS are optimal regarding their energy concentration in a given frequency subband. In this paper, we propose the 2D extension of(More)
—A new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of two stages. The first stage computes a fuzzy derivative for eight different directions. The second stage uses these fuzzy derivatives to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Both stages are(More)
This paper proposes a new family of bivariate, nonseparable splines, called hex-splines, especially designed for hexagonal lattices. The starting point of the construction is the indicator function of the Voronoi cell, which is used to define in a natural way the first-order hex-spline. Higher order hex-splines are obtained by successive convolutions. A(More)
In this paper, we will describe a theoretical model of the spatial uncertainty for a line of response, due to the imperfect localization of events on the detector heads of a positron emission tomography (PET) camera. The forward acquisition problem is modelled by a Gaussian distribution of the position of interaction on a detector head, centred at the(More)