Learn More
In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based(More)
In this paper we propose a novel, passive approach for detecting and tracking malicious flux service networks. Our detection system is based on passive analysis of recursive DNS (RDNS) traffic traces collected from multiple large networks. Contrary to previous work, our approach is not limited to the analysis of suspicious domain names extracted from spam(More)
In this paper, we present FluxBuster, a novel passive DNS traffic analysis system for detecting and tracking malicious flux networks. FluxBuster applies large-scale monitoring of DNS traffic traces generated by recursive DNS (RDNS) servers located in hundreds of different networks scattered across several different geographical locations. Unlike most(More)
PDF files have proved to be excellent malicious-code bearing vectors. Thanks to their flexible logical structure, an attack can be hidden in several ways, and easily deceive protection mechanisms based on file-type filtering. Recent work showed that malicious PDF files can be accurately detected by analyzing their <i>logical structure</i>, with excellent(More)
Clustering algorithms have become a popular tool in computer security to analyze the behavior of malware variants, identify novel malware families, and generate signatures for antivirus systems. However, the suitability of clustering algorithms for security-sensitive settings has been recently questioned by showing that they can be significantly compromised(More)
In order to effectively evade anti-malware solutions, Android malware authors are progressively resorting to automatic obfuscation strategies. Recent works have shown, on small-scale experiments, the possibility of evading anti-malware engines by applying simple obfuscation transformations on previously detected malware samples. In this paper, we provide a(More)
Pattern recognition systems have been widely used in ad-versarial classification tasks like spam filtering and intrusion detection in computer networks. In these applications a malicious adversary may successfully mislead a classifier by " poisoning " its training data with carefully designed attacks. Bagging is a well-known ensemble construction method,(More)
—Nowadays, the web-based architecture is the most frequently used for a wide range of internet services, as it allows to easily access and manage information and software on remote machines. The input of web applications is made up of queries, i.e. sequences of pairs attribute←value. A wide range of attacks exploits web application vulnerabilities,(More)