Igal Finarov

Learn More
Monomeric human mitochondrial phenylalanyl-tRNA synthetase (PheRS), or hmPheRS, is the smallest known enzyme exhibiting aminoacylation activity. HmPheRS consists of only two structural domains and differs markedly from heterodimeric eukaryotic cytosolic and bacterial analogs both in the domain organization and in the mode of tRNA binding. Here, we describe(More)
All class II aminoacyl-tRNA synthetases (aaRSs) are known to be active as functional homodimers, homotetramers, or heterotetramers. However, multimeric organization is not a prerequisite for phenylalanylation activity, as monomeric mitochondrial phenylalanyl-tRNA synthetase (PheRS) is also active. We herein report the structure, at 2.2 A resolution, of a(More)
The existence of three types of phenylalanyl-tRNA synthetase (PheRS), bacterial (alphabeta)(2), eukaryotic/archaeal cytosolic (alphabeta)(2), and mitochondrial alpha, is a prominent example of structural diversity within the aaRS family. PheRSs have considerably diverged in primary sequences, domain compositions, and subunit organizations. Loss of the(More)
The crystal structure of Phenylalanyl-tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl-tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αβ)₂ heterotetramer: the αβ heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N-terminus, A1 and A2 belong to the α-subunit and(More)
Human cytosolic phenylalanyl-tRNA synthetase (hcPheRS) is responsible for the covalent attachment of phenylalanine to its cognate tRNA(Phe). Significant differences between the amino-acid sequences of eukaryotic and prokaryotic PheRSs indicate that the domain composition of hcPheRS differs from that of the Thermus thermophilus analogue. As a consequence of(More)
Aminoacyl-tRNA synthetases (aaRSs) are a canonical set of enzymes that specifically attach corresponding amino acids to their cognate transfer RNAs in the cytoplasm, mitochondria, and nucleus. The aaRSs display great differences in primary sequence, subunit size, and quaternary structure. Existence of three types of phenylalanyl-tRNA synthetase(More)
  • 1