Learn More
Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine(More)
With an aim to elucidate novel metabolic and transcriptional interactions associated with methionine (Met) metabolism in seeds, we have produced transgenic Arabidopsis (Arabidopsis thaliana) seeds expressing a feedback-insensitive form of CYSTATHIONINE-γ-SYNTHASE, a key enzyme of Met synthesis. Metabolic profiling of these seeds revealed that, in addition(More)
The essential sulfur-containing amino acid methionine plays a vital role in plant metabolism and human nutrition. In this study, we aimed to elucidate the regulatory role of the first committed enzyme in the methionine biosynthesis pathway, cystathionine γ-synthase (CGS), on methionine accumulation in tobacco seeds. We also studied the effect of this(More)
Methionine and threonine are two essential amino acids, the levels of which limit the nutritional quality of plants. Both amino acids diverge from the same branch of the aspartate family biosynthesis pathway; therefore, their biosynthesis pathways compete for the same carbon/amino substrate. To further elucidate the regulation of methionine biosynthesis and(More)
The cysteine biosynthesis pathway differs between plants and the yeast Saccharomyces cerevisiae. The yeast MET25 gene encoded to O-acetylhomoserine sulfhydrylase (AHS) catalyzed the reaction that form homocysteine, which later can be converted into cystiene. In vitro studies show that this enzyme possesses also the activity of O-acetyl(thiol)lyase (OASTL)(More)
The sulfur-containing essential amino acid methionine controls the level of important metabolites and processes in plants. In addition, methionine levels limit the nutritional quality of many crop plants. The level of methionine is regulated mainly by cystathionine γ-synthase (CGS), the first enzyme committed to its biosynthesis. Within our efforts to(More)
Methionine is an essential amino acid the low level of which limits the nutritional quality of plants. We formerly produced transgenic tobacco (Nicotiana tabacum) plants overexpressing CYSTATHIONE γ-SYNTHASE (CGS) (FA plants), methionine's main regulatory enzyme. These plants accumulate significantly higher levels of methionine compared with wild-type (WT)(More)
  • 1