Learn More
Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w = 1, the only periodic orbits which(More)
We study the distribution of the number of (non-backtracking) periodic walks on large regular graphs. We propose a formula for the ratio between the variance of the number of t-periodic walks and its mean, when the cardinality of the vertex set V and the period t approach ∞ with t/V → τ for any τ. This formula is based on the conjecture that the spectral(More)
We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive(More)
  • 1