Learn More
To understand metabolic networks, fluxes and regulation, it is crucial to be able to determine the cellular and subcellular levels of metabolites. Methods such as PET and NMR imaging have provided us with the possibility of studying metabolic processes in living organisms. However, at present these technologies do not permit measuring at the subcellular(More)
Glucose homeostasis is a function of glucose supply, transport across the plasma membrane, and metabolism. To monitor glucose dynamics in individual cells, a glucose nanosensor was developed by flanking the Escherichia coli periplasmic glucose/galactose-binding protein with two different green fluorescent protein variants. Upon binding of substrate the(More)
Nitrogen is the only macronutrient that is commonly available to plants in both oxidized and reduced forms, mainly nitrate and ammonium. The physiological and molecular effects of nitrate supply have been well studied, but comparatively little is known about ammonium nutrition and its differential effects on cell function and gene expression. We have used a(More)
Genetically encoded glucose nanosensors have been used to measure steady state glucose levels in mammalian cytosol, nuclei, and endoplasmic reticulum. Unfortunately, the same nanosensors in Arabidopsis thaliana transformants manifested transgene silencing and undetectable fluorescence resonance energy transfer changes. Expressing nanosensors in sgs3 and(More)
pH is a highly variable environmental factor for the root, and plant cells can modify apoplastic pH for nutrient acquisition and in response to extracellular signals. Nevertheless, surprisingly few effects of external pH on plant gene expression have been reported. We have used microarrays to investigate whether external pH affects global gene expression.(More)
Plants have lysophosphatidylcholine transacylase (LPCT) and acyl-CoA:glycerophosphocholine acyltransferase (GPCAT) activities. The combined action of LPCT and GPCAT provides a novel route of PC re-synthesis after its deacylation. Phosphatidylcholine (PC) is the major lipid in eukaryotic membranes and has a central role in overall plant lipid metabolism. It(More)
Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species(More)
During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain(More)
Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through(More)
BACKGROUND Metabolomics, i.e., the multiparallel analysis of metabolite changes occurring in a cell or an organism, has become feasible with the development of highly efficient mass spectroscopic technologies. Functional genomics as a standard tool helped to identify the function of many of the genes that encode important transporters and metabolic enzymes(More)