Ida J. van der Klei

Learn More
In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with(More)
In previous work, we have demonstrated that oleate induces a massive proliferation of microbodies (peroxisomes) in Aspergillus nidulans. Although at a lower level, proliferation of peroxisomes also occurrs in cells growing under conditions that induce penicillin biosynthesis. Here, microbodies in oleate-grown A. nidulans cells were characterized by using(More)
Methylotrophic yeasts contain large peroxisomes during growth on methanol. Upon exposure to excess glucose or ethanol these organelles are selectively degraded by autophagy. Here we describe the cloning of a Pichia pastoris gene (PpVPS15) involved in peroxisome degradation, which is homologous to Saccharomyces cerevisiae VPS15. In methanol-grown cells of a(More)
In the methylotrophic yeast Hansenula polymorpha, approximately 25% of all methanol-utilization-defective (Mut-) mutants are affected in genes required for peroxisome biogenesis (PER genes). Previously, we reported that one group of per mutants, termed Pim-, are characterized by the presence of a few small peroxisomes with the bulk of peroxisomal enzymes(More)
Extremely low specific growth rates (below 0.01 h(-1) ) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is typically(More)
We have cloned the Hansenula polymorpha BIP gene from genomic DNA using a PCR-based strategy. H. polymorpha BIP encodes a protein of 665 amino acids, which shows very high homology to Saccharomyces cerevisiae KAR2p. KAR2p belongs to the Hsp70 family of molecular chaperones and resides in the endoplasmic reticulum (ER)-lumen. H. polymorpha BiP contains a(More)
We have studied methanol-utilization in a peroxisome-deficient (PER) mutant of Hansenula polymorphoa. In spite of the fact that in carbon-limited chemostat cultures under induced conditions the enzymes involved in methanol metabolism were present at wild-type (WT) levels, this mutant is unable to grow on methanol as a sole carbon and energy source. Addition(More)
The Hansenula polymorpha per6-210 mutant is impaired in respect of growth on methanol (Mut–) and is characterized by aberrant peroxisome formation. The functionally complementing DNA fragment contains two open reading frames. The first encodes dihydroxyacetone kinase (DAK), a cytosolic enzyme essential for formaldehyde assimilation; the second ORF codes for(More)
Genetically defined strains of the yeast Hansenula polymorpha were constructed from a clone of H. polymorpha CBS4732 with very low mating and sporulation abilities. Mating, spore viability, and the percentage of four-spore-containing asci were increased to a level at which tetrad analysis was possible. Auxotrophic mutations in 30 genes were isolated and(More)
Compartmentation of the metabolism of ethylamine in Trichosporon cutaneum X4 was studied in cells, grown on this compound as the sole source of energy, carbon, and nitrogen. Transfer experiments indicated that an amine oxidase is involved in the early metabolism of ethylamine. The synthesis of this enzyme was induced by primary amines and was subject to(More)