Learn More
This paper summarises recent trends in predictive modelling of microbial lag phenomena. The lag phase is approached from both a qualitative and a quantitative point of view. First, a definition of lag and an analysis of the prevailing measuring techniques for the determination of lag time is presented. Furthermore, based on experimental results presented in(More)
Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) mutation have a poor prognosis, and FLT3 inhibitors are now under clinical investigation. PIM1, a serine/threonine kinase, is up-regulated in FLT3-ITD AML and may be involved in FLT3-mediated leukemogenesis. We employed a PIM1 inhibitor, AR00459339 (Array Biopharma(More)
The microbial lag phase is a complex and yet not completely understood phenomenon. Many studies on the microbial lag phase have been published but few report a systematic study; moreover, previous lag studies have involved the effect of multiple confounded factors. Here, the effect of sudden temperature rises on an exponentially growing Escherichia coli(More)
AIMS This paper studies and models the effect of the amplitude of a sudden temperature upshift DeltaT on the adaptation period of Escherichia coli, in terms of the work to be done by the cells during the subsequent lag phase (i.e., the product of growth rate mumax and lag phase duration lambda). METHODS AND RESULTS Experimental data are obtained from(More)
This paper summarises recent trends in predictive modelling of microbial lag phenomena. The lag phase is approached from both a qualitative and quantitative point of view. Major modelling approaches and experimental results are critically assessed. This review mainly focuses on the influence of temperature and culture history on the lag phase during growth(More)
  • 1