#### Filter Results:

#### Publication Year

1993

2014

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

A coupled cell system is a network of dynamical systems, or " cells, " coupled together. The architecture of a coupled cell network is a graph that indicates how cells are coupled and which cells are equivalent. Stewart, Golubitsky, and Pivato presented a framework for coupled cell systems that permits a classification of robust synchrony in terms of… (More)

A coupled cell system is a network of dynamical systems, or 'cells', coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that preserves all internal dynamics and all couplings. Symmetry can… (More)

The general, model-independent features of different networks of six symmetrically coupled nonlin-ear oscillators are investigated. These networks are considered as possible models for locomotor central pattern generators (CPGs) in insects. Numerical experiments with a specific oscillator network model are briefly described. It is shown that some generic… (More)

We discuss several examples of synchronous dynamical phenomena in coupled cell networks that are unexpected from symmetry considerations, but are natural using a theory developed by Stewart, Golubitsky, and Pivato. In particular we demonstrate patterns of synchrony in networks with small numbers of cells and in lattices (and periodic arrays) of cells that… (More)

In this paper, a general approach for studying rings of coupled biological oscillators is presented. This approach, which is group-theoretic in nature, is based on the finding that symmetric ring networks of coupled non-linear oscillators possess generic patterns of phase-locked oscillations. The associated analysis is independent of the mathematical… (More)

Equivariant dynamical systems possess canonical flow-invariant subspaces, the fixed-point spaces of subgroups of the symmetry group. These subspaces classify possible types of symmetry-breaking. Coupled cell networks, determined by a symmetry groupoid, also possess canonical flow-invariant subspaces, the balanced polydiagonals. These subspaces classify… (More)

The vestibular system in almost all vertebrates, and in particular in humans, controls balance by employing a set of six semicircular canals, three in each inner ear, to detect angular accelerations of the head in three mutually orthogonal coordinate planes. Signals from the canals are transmitted to eight (groups of) neck motoneurons, which activate the… (More)

This paper continues the study of patterns of synchrony (equivalently, balanced colorings or flow-invariant subspaces) in symmetric coupled cell networks, and their relation to fixed-point spaces of subgroups of the symmetry group. Let Γ be a permutation group acting on the set of cells. We define the group network G Γ , whose architecture is entirely… (More)

We study synchrony-breaking local steady-state bifurcation in networks of dynamical systems when the critical eigenvalue is real and simple, using singularity theory to transform the bifurcation into normal form. In a general dynamical system, a generic steady-state local bifurcation from a trivial state is transcritical. In the presence of symmetry, a… (More)