Learn More
Probably more than 25% of the proteins encoded by the nuclear genomes of multicellular eukaryotes are targeted to membrane-bound compartments by N-terminal targeting signals. The major signals are those for the endoplasmic reticulum, the mitochondria, and in plants, plastids. The most abundant of these targeted proteins are well-known and well-studied, but(More)
The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis(More)
Genome sequencing projects in eukaryotes are revealing thousands of new genes of unknown function, many of which fall into gene families. We discovered one such family while systematically screening predicted Arabidopsis proteins for those likely to be targeted to mitochondria or chloroplasts. This large gene family (almost 200 genes in the 70% of the(More)
Knowledge of protein localisation contributes towards our understanding of protein function and of biological inter-relationships. A variety of experimental methods are currently being used to produce localisation data that need to be made accessible in an integrated manner. Chimeric fluorescent fusion proteins have been used to define subcellular(More)
Pentatricopeptide repeat (PPR) proteins are RNA-binding proteins that are particularly prevalent in terrestrial plants. Although the PPR protein family was only recognized eight years ago, it is already clear that these proteins have a range of essential functions in post-transcriptional processes (including RNA editing, RNA splicing, RNA cleavage and(More)
To gain a global view of mRNA decay in Arabidopsis thaliana, suspension cell cultures were treated with a transcriptional inhibitor, and microarrays were used to measure transcript abundance over time. The deduced mRNA half-lives varied widely, from minutes to >24 h. Three features of the transcript displayed a correlation with decay rates: (1) genes(More)
Sequence analysis of the Ogura-specific mitochondria) DNA (mtDNA) fragment isolated previously from Brassica cybrids carrying Ogura cytoplasmic male sterility (cms) revealed a tRNAfMet sequence, a putative 138 amino acid open reading frame (orf138), and a 158 amino acid ORF (orf158) previously observed in mitochondria) genomes from several other plant(More)
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the(More)
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR(More)
Pentatricopeptide repeat (PPR) proteins form a huge family in plants (450 members in Arabidopsis and 477 in rice) defined by tandem repetitions of characteristic sequence motifs. Some of these proteins have been shown to play a role in posttranscriptional processes within organelles, and they are thought to be sequence-specific RNA-binding proteins. The(More)