Ian R Baldwin

Learn More
The discovery and hit-to-lead exploration of a novel series of selective IKK-β kinase inhibitors is described. The initial lead fragment 3 was identified by pharmacophore-directed virtual screening. Homology model-driven SAR exploration of the template led to potent inhibitors, such as 12, which demonstrate efficacy in cellular assays and possess(More)
New kinase inhibitors can be found by synthesis of targeted arrays of compounds designed using system-based knowledge as well as through screening focused or diverse compounds. Most array strategies aim to add functionality to a fragment that binds in the purine subpocket of the ATP-site. Here, an alternative pharmacophore-guided array approach is described(More)
Selective inhibitors of phosphoinositide 3-kinase delta are of interest for the treatment of inflammatory diseases. Initial optimization of a 3-substituted indazole hit compound targeting the kinase PIM1 focused on improving selectivity over GSK3β through consideration of differences in the ATP binding pockets. Continued kinase cross-screening showed PI3Kδ(More)
Optimization of lead compound 1, through extensive use of structure-based design and a focus on PI3Kδ potency, isoform selectivity, and inhaled PK properties, led to the discovery of clinical candidates 2 (GSK2269557) and 3 (GSK2292767) for the treatment of respiratory indications via inhalation. Compounds 2 and 3 are both highly selective for PI3Kδ over(More)
In this article, we describe a practical drug discovery project for third-year undergraduates. No previous knowledge of medicinal chemistry is assumed. Initial lecture workshops cover the basic principles; then students, in teams, seek to improve the profile of a weakly potent, insoluble phosphatidylinositide 3-kinase delta (PI3Kδ) inhibitor (1) through(More)
  • 1