Learn More
Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid,(More)
The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity,(More)
BACKGROUND Human rhinoviruses (HRVs) are the most frequently detected pathogens in acute respiratory tract infections (ARTIs) and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During 2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To(More)
Today, quantitative real-time PCR is the method of choice for rapid and reliable quantification of mRNA transcription. However, for an exact comparison of mRNA transcription in different samples or tissues it is crucial to choose the appropriate reference gene. Recently glyceraldehyde 3-phosphate dehydrogenase and beta-actin have been used for that purpose.(More)
We report the identification of a novel polyomavirus present in respiratory secretions from human patients with symptoms of acute respiratory tract infection. The virus was initially detected in a nasopharyngeal aspirate from a 3-year-old child from Australia diagnosed with pneumonia. A random library was generated from nucleic acids extracted from the(More)
We analyzed 64 human metapneumovirus strains from eight countries. Phylogenetic analysis identified two groups (A and B, amino acid identity 93%-96%) and four subgroups. Although group A strains predominated, accounting for 69% of all strains, as many B as A strains were found in persons >3 years of age.
We conducted a preliminary comparison of the relative sensitivity of a cross-section of published human rhinovirus (HRV)-specific PCR primer pairs, varying the oligonucleotides and annealing temperature. None of the pairs could detect all HRVs in 2 panels of genotyped clinical specimens; >1 PCR is required for accurate description of HRV epidemiology.
BACKGROUND Acute lower respiratory infections are the commonest cause of morbidity and potentially preventable mortality in Indigenous infants. Infancy is also a critical time for post-natal lung growth and development. Severe or repeated lower airway injury in very young children likely increases the likelihood of chronic pulmonary disorders later in life.(More)
INTRODUCTION Even in developed economies infectious diseases remain the most common cause of illness in early childhood. Our current understanding of the epidemiology of these infections is limited by reliance on data from decades ago performed using low-sensitivity laboratory methods, and recent studies reporting severe, hospital-managed disease. METHODS(More)
We examined 10,025 respiratory samples collected for 4 years (2001-2004) and found a 7.1% average annual incidence of human metapneumovirus. The epidemic peak of infection was late winter to spring, and genotyping showed a change in predominant viral genotype in 3 of the 4 years.