Learn More
The high-frequency limit of phase-locking has been measured in fibres of the auditory nerve in the guinea-pig. It is shown that phase-locking begins to decline at about 600 Hz and is no longer detectable above 3.5 kHz which is about 1 octave lower than in the cat, squirrel monkey and some birds. Direct measurements of the cochlear afferent fibre synaptic(More)
1. Intracellular recordings were made from inner hair cells in the first turn of the guinea-pig cochlea, the recording sites being confirmed by the injection of Procion yellow dye and subsequent histology. 2. The receptor potential, in response to a pure tone burst, consisted of an AC response which followed the wave form of the stimulus and was analogous(More)
Until recently the responses of the mechanosensitive hair cells of the cochlea have been inferred from their morphology, morphological relationships with other structures in the cochlea, and by indirect electrophysiological measurements. With the advent of techniques for making intracellular recordings from hair cells in the cochleas of anaesthetised(More)
Adult mustached bats employ Doppler-sensitive sonar to hunt fluttering prey insects in acoustically cluttered habitats. The echolocation call consists of 4-5 harmonics, each composed of a long constant frequency (CF) component flanked by brief frequency modulations (FM). The 2nd harmonic CF component (CF2) at 61 kHz is the most intense, and analyzed by an(More)
Tone-evoked basilar membrane (BM) displacements were measured with a laser diode interferometer from the basal turn of the guinea pig cochlea. The olivocochlear bundle (OCB) was electrically stimulated for 60--80 msec periods at rates of < 200 sec-1 via electrodes placed at the point at which the OCB crosses the floor of the fourth ventricle. For tones(More)
Intracellular receptor potentials were recorded from inner and outer hair cells in response to low-frequency tones, from the basal, high-frequency region of the guinea-pig cochlea. The receptor potentials recorded from inner hair cells are asymmetrical about the resting membrane potential with the depolarizing phase, which corresponds to rarefaction in(More)
Immunological techniques have been used to generate both polyclonal and monoclonal antibodies specific for the apical ends of sensory hair cells in the avian inner ear. The hair cell antigen recognized by these antibodies is soluble in nonionic detergent, behaves on sucrose gradients primarily as a 16S particle, and, after immunoprecipitation, migrates as a(More)
An extended region of the greater mustached bat's cochlea, the sparsely innervated (SI) zone, is located just basally to the frequency place of the dominant 61-kHz component of the echolocation signal (CF2). Anatomic adaptations in the SI zone are thought to provide the basis for cochlear resonance to the CF2 echoes and for the extremely sharp tuning(More)
alpha-tectorin is an extracellular matrix molecule of the inner ear. Mice homozygous for a targeted deletion in a-tectorin have tectorial membranes that are detached from the cochlear epithelium and lack all noncollagenous matrix, but the architecture of the organ of Corti is otherwise normal. The basilar membranes of wild-type and alpha-tectorin mutant(More)
Light and electron microscopy have been used to evaluate the effects of treating mouse cochlear cultures with the ototoxic aminoglycoside antibiotic neomycin sulphate at concentrations of 0.2 mM and greater for periods of up to 1 hour. Neomycin rapidly induces the formation of numerous, membrane filled blisters on the apical surfaces of the sensory hair(More)