Ian J. C. Wallace

Learn More
Anthropologists accept that mobility is a critical dimension of human culture, one that links economy, technology, and social relations. Less often acknowledged is that mobility depends on complex and dynamic interactions between multiple levels of our biological organization, including anatomy, physiology, neurobiology, and genetics. Here, we describe a(More)
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches.(More)
Limb bone diaphyseal structure is frequently used to infer hominin activity levels from skeletal remains, an approach based on the well-documented ability of bone to adjust to its loading environment during life. However, diaphyseal structure is also determined in part by genetic factors. This study investigates the possibility that genetic variation(More)
In the recent description of the hominin postcranial material from Dmanisi, Georgia, Lordkipanidze and colleagues (Lordkipanidze et al. [2007] Nature 449: 305-310) claim that the Dmanisi hominins walked with more medially oriented feet than do modern humans. They draw this functional inference from two postcranial features: a wide talar neck angle and a(More)
To gain insight into past human physical activity, anthropologists often infer functional loading history from the morphology of limb bone remains. It is assumed that, during life, loading had a positive, dose-dependent effect on bone structure that can be identified despite other effects. Here, we investigate the effects of genetic background and(More)
Functional interpretations of limb bone structure frequently assume that diaphyses adjust their shape by adding bone primarily across the plane in which they are habitually loaded in order to minimize loading-induced strains. Here, to test this hypothesis, we characterize the in vivo strain environment of the sheep tibial midshaft during treadmill exercise(More)
OBJECTIVE An experiment was conducted to determine if modifying habitual activities to involve mechanical loading from more diverse directions can enhance the growing skeleton. METHODS Growing female C57BL/6J mice were housed individually for 3 months in enclosures designed to accentuate either non-linear locomotion (diverse-orientation loading) or linear(More)
T he Levallois reduction strategy has long been considered a hallmark of the Middle Paleolithic of Western Eurasia (Bordes 1953) and the Middle Stone Age of Africa (Goodwin 1929). However, both the definition of the technique and its possible significance remain controversial pa-leoanthropological issues (see papers in Dibble and Bar-Yo-sef 1995).(More)
Force magnitudes have been suggested to drive the structural response of bone to exercise. As importantly, the degree to which any given bone can adapt to functional challenges may be enabled, or constrained, by regional variation in the capacity of marrow progenitors to differentiate into bone-forming cells. Here, we investigate the relationship between(More)
Accreditation to ISO/IEC 17025 is required for EC official food control and veterinary laboratories by Regulation (EC) No. 882/2004. Measurements in hospital laboratories and clinics are increasingly accredited to ISO/IEC 15189. Both of these management standards arose from command and control military standards for factory inspection during World War II.(More)