Learn More
Two leucines (Leu986 and Leu987) have recently been shown to take part in the control of human insulin receptor (HIR) internalization (Renfrew-Haft, C., Klausner, R. D., and Taylor, S. I. (1994) J. Biol. Chem. 269, 26286-26294). The aim of the present study was to further investigate the exact mechanism of this control process. Constitutive and(More)
The complement C3b/C4b receptor (CR1) is an integral protein, anchored in the plasma membrane through a hydrophobic domain of 25 amino acids, but is also found in the plasma in soluble form (sCR1). A recombinant, soluble form of CR1 has been demonstrated to reduce complement-dependent tissue injury in animal models of ischaemia/reperfusion. In view of the(More)
The surface events leading to insulin-induced internalization of its specific receptor can be subdivided in three major steps: the first step consists in the surface redistribution of the receptor from the villous to the non-villous region of the cell surface, it is ligand-specific, depends on kinase activation and phosphorylation of tyrosines 1146, 1150(More)
Dileucine-containing motifs are involved in trans-Golgi sorting, lysosomal targeting, and internalization. Previously, we have shown that the dileucine motif (EKITLL, residues 982-987) in the juxtamembrane region of the insulin receptor is involved in receptor internalization. Substitution of alanine residues for Leu986 and Leu987 led to a 3- to 5-fold(More)
  • 1