Learn More
The epithelial cells of the choroid plexuses secrete cerebrospinal fluid (CSF), by a process which involves the transport of Na(+), Cl(-) and HCO(3)(-) from the blood to the ventricles of the brain. The unidirectional transport of ions is achieved due to the polarity of the epithelium, i.e. the ion transport proteins in the blood-facing (basolateral)(More)
The transport stoichiometry of the electrogenic sodium-bicarbonate cotransporter (SLC4A5 or NBCe2) in mouse choroid plexus was examined. Whole-cell recording methods measured the currents carried by the NBCe2, using experimental solutions determined to minimise the contributions of the other ion conductances present. Increases in outward current were(More)
PURPOSE Autosomal recessive bestrophinopathy (ARB) is a retinal dystrophy affecting macular and retinal pigmented epithelium function resulting from homozygous or compound heterozygous mutations in BEST1. In this study we characterize the functional implications of missense bestrophin-1 mutations that cause ARB by investigating their effect on(More)
Knowledge of the diversity of ion channel form and function has increased enormously over the last 25 years. The initial impetus in channel discovery came with the introduction of the patch clamp method in 1981. Functional data from patch clamp experiments have subsequently been augmented by molecular studies which have determined channel structures. Thus(More)
The whole-cell patch-clamp technique was used to examine nonselective conductances in single proximal tubule cells isolated from mouse kidney. Single cells were isolated in either the presence or absence of a cocktail designed to stimulate cAMP. Patches were obtained with Na+ Ringer in the bath and Cs+ Ringer in the pipette. On initially achieving the(More)
The endothelial cells of the brain microvasculature, which constitute the blood-brain barrier, secrete K+ into brain interstitial fluid. K+ channels are predicted to have a central role to play in this process. The aim of the following study was to characterise K+ channels in primary cultures of endothelial cells isolated from rat brain microvessels by(More)
K(+) channels play an important role in renal collecting duct cell function. The current study examined barium (Ba(2+))-sensitive whole-cell K(+) currents (IKBa) in mouse isolated collecting duct principal cells. IKBa demonstrated strong inward rectification and was inhibited by Ba(2+) in a dose- and voltage-dependent fashion, with the K (d) decreasing with(More)
KCNE1 is a protein of low molecular mass that is known to regulate the chromanol 293B and clofilium-sensitive K+ channel, KCNQ1, in a number of tissues. Previous work on the kidney of KCNE1 and KCNQ1 knockout mice has revealed that these animals have different renal phenotypes, suggesting that KCNE1 may not regulate KCNQ1 in the renal system. In the current(More)
  • 1