Learn More
BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly(More)
The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity,(More)
Mutations in BLM, which encodes a RecQ helicase, give rise to Bloom's syndrome, a disorder associated with cancer predisposition and genomic instability. A defining feature of Bloom's syndrome is an elevated frequency of sister chromatid exchanges. These arise from crossing over of chromatid arms during homologous recombination, a ubiquitous process that(More)
BLM and WRN, the products of the Bloom's and Werner's syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3'-->5' polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have(More)
Topoisomerase II (topo II) catalyzes the decatenation of interlinked DNA molecules and is essential for chromosome segregation. To test the hypothesis that the noncatalytic C-terminal domain of topo II is necessary for mediating interactions with other proteins required for chromosome segregation, we used a two-hybrid cloning strategy to identify proteins(More)
A double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ(More)
Topoisomerase II is a key target for many anti-cancer drugs used to treat breast cancer. In human cells there are two closely related, but differentially expressed, topoisomerase II isoforms, designated topoisomerase II alpha and beta. Here, we report the production of a new polyclonal antibody raised against a fragment of the C-terminal domain of the 180(More)
Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'),(More)
The Bloom's syndrome helicase, BLM, is a member of the highly conserved RecQ family, and possesses both DNA unwinding and DNA strand annealing activities. BLM also promotes branch migration of Holliday junctions. One role for BLM is to act in conjunction with topoisomerase IIIalpha to process homologous recombination (HR) intermediates containing a double(More)
We visualized DNA topoisomerases in A431 cells and isolated chromosomes by isoenzyme-selective immunofluorescence microscopy. In interphase, topoisomerase I mainly had a homogeneous nuclear distribution. 10-15% of the cells exhibited granular patterns, 30% showed bright intranucleolar patches. Topoisomerase II isoenzymes showed spotted (alpha) or reticular(More)