Learn More
Voltage-gated calcium channels are well characterized at neuronal somata but less thoroughly understood at the presynaptic terminal where they trigger transmitter release. In order to elucidate how the intrinsic properties of presynaptic calcium channels influence synaptic function, we have made direct recordings of the presynaptic calcium current (I(pCa))(More)
Short-term facilitation and depression have a profound influence on transmission at many glutamatergic synapses, particularly during trains of stimuli. A major component of these processes is postsynaptic receptor desensitization. Both presynaptic and postsynaptic mechanisms can contribute to synaptic efficacy, but it is often difficult to define their(More)
Low-threshold voltage-gated potassium currents (I(LT)) activating close to resting membrane potentials play an important role in shaping action potential (AP) firing patterns. In the medial nucleus of the trapezoid body (MNTB), I(LT) ensures generation of single APs during each EPSP, so that the timing and pattern of AP firing is preserved on transmission(More)
Presynaptic group III metabotropic glutamate receptor (mGluR) activation by exogenous agonists (such as L-2-amino-4-phosphonobutyrate (L-AP4)) potently inhibit transmitter release, but their autoreceptor function has been questioned because endogenous activation during high-frequency stimulation appears to have little impact on synaptic amplitude. We(More)
Calcium channels of the P/Q subtype mediate transmitter release at the neuromuscular junction and at many central synapses, such as the calyx of Held. Transgenic mice in which alpha1A channels are ablated provide a powerful tool with which to test compensatory mechanisms at the synapse and to explore mechanisms of presynaptic regulation associated with(More)
Nitric oxide (NO) is an important signaling molecule that is widely used in the nervous system. With recognition of its roles in synaptic plasticity (long-term potentiation, LTP; long-term depression, LTD) and elucidation of calcium-dependent, NMDAR-mediated activation of neuronal nitric oxide synthase (nNOS), numerous molecular and pharmacological tools(More)
Beyond their role in generating ATP, mitochondria have a high capacity to sequester calcium. The interdependence of these functions and limited access to presynaptic compartments makes it difficult to assess the role of sequestration in synaptic transmission. We addressed this important question using the calyx of Held as a model glutamatergic synapse by(More)
The p53 family member TAp73 is a transcription factor that plays a key role in many biological processes, including neuronal development. In particular, we have shown that p73 drives the expression of miR-34a, but not miR-34b and c, in mouse cortical neurons. miR-34a in turn modulates the expression of synaptic targets including synaptotagmin-1 and(More)
Previous studies have demonstrated that microribonucleic acids (miRs) are key regulators of protein expression in the brain and modulate dendritic spine morphology and synaptic activity. To identify novel miRs involved in neuronal plasticity, we exposed adult mice to chronic treatments with nicotine, cocaine, or amphetamine, which are psychoactive drugs(More)