Learn More
The defining feature of bacterial phase variation is a stochastic 'all-or-nothing' switching in gene expression. However, direct observations of these rare switching events have so far been lacking, obscuring possible correlations between switching events themselves, and between switching and other cellular events, such as division and DNA replication. We(More)
The fim system in E. coli controls the expression of type-1 fimbriae. These are hair-like structures that can be used to attach to host cells. Fimbriation is controlled by a mechanism called "orientational control." We present two families of models for orientational control to understand the details of how it works. We find that the main benefits of(More)
This article reports on experimental evidence that an Escherichia coli nanR mutant shows inhibited growth in N-acetylneuraminic acid. This effect is prevented when inocula are grown in an excess of glucose, but not in an excess of glycerol. The nanATEK operon is controlled by catabolite repression, suggesting that diminished expression of the nanATEK operon(More)
We have demonstrated that SlyA activates fimB expression and hence type 1 fimbriation, a virulence factor in Escherichia coli. SlyA is shown to bind to two operator sites (O(SA1) and O(SA2)), situated between 194 and 167 base pairs upstream of the fimB transcriptional start site. fimB expression is derepressed in an hns mutant and diminished by a slyA(More)
The phase variation (reversible on-off switching) of the type 1 fimbrial adhesin of Escherichia coli involves a DNA inversion catalyzed by FimB (switching in either direction) or FimE (on-to-off switching). Here, we demonstrate that RfaH activates expression of a FimB-LacZ protein fusion while having a modest inhibitory effect on a comparable fimB-lacZ(More)
  • 1