Iain W. McKinnell

Learn More
Follistatin is known to antagonise the function of several members of the TGF-beta family of secreted signalling factors, including Myostatin, the most powerful inhibitor of muscle growth characterised to date. In this study, we compare the expression of Myostatin and Follistatin during chick development and show that they are expressed in the vicinity or(More)
RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither(More)
Receptor tyrosine kinases and receptor protein tyrosine phosphatases (RPTPs) appear to coordinate many aspects of neural development, including axon growth and guidance. Here, we focus on the possible roles of RPTPs in the developing avian retinotectal system. Using both in situ hybridization analysis and immunohistochemistry, we show for the first time(More)
Receptor protein tyrosine phosphatases (RPTPs) are regulators of axon outgrowth and guidance in a variety of different vertebrate and invertebrate systems. Three RPTPs, CRYP-alpha, PTP-delta, and LAR, are expressed in overlapping but distinct patterns in the developing Xenopus retina, including expression in retinal ganglion cells (RGCs) as they send axons(More)
Myostatin is a potent inhibitor of muscle growth. Genetic deletion of Myostatin leads to massive hyperplasia and hypertrophy of skeletal muscle. However, the overall muscle pattern is preserved. We show that, during chick embryonic development, Myostatin is expressed at stages and positions unlikely to influence qualitative muscle development. In the(More)
In higher vertebrates, the paraxial mesoderm undergoes a mesenchymal to epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be(More)
The cell adhesion molecule-like tyrosine phosphatase CRYPalpha is localized on retinal axons and their growth cones. We present evidence that two isoforms of this type IIa phosphatase, CRYPalpha1 and CRYPalpha2, have extracellular ligands along the developing retinotectal pathway. Using alkaline phosphatase fusion proteins containing the CRYPalpha1(More)
Muscle satellite cells are responsible for the postnatal growth and robust regeneration capacity of adult skeletal muscle. A subset of satellite cells purified from adult skeletal muscle is capable of repopulating the satellite cell pool, suggesting that it has direct therapeutic potential for treating degenerative muscle disease. Satellite cells uniformly(More)
Increased sarcolemmal permeability has been implicated as a major pathological event in muscular dystrophies. In our study, we evaluated whether damaged muscle fibres can be specifically targeted using albumin as a carrier. We tagged human serum albumin (HSA) with Gadolinium (Gd) and systemically applied this compound (Gd-DTPA-HSA) to wildtype and(More)
BACKGROUND MicroRNAs (miRNAs) are short non-coding RNAs predicted to regulate one third of protein coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor), miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to(More)