Learn More
Attempts to correlate behavioral learning with cellular changes, such as increased synaptic efficacy, have often relied on increased extracellular potentials as an index of enhanced synaptic strength. A recent example is the enlarged excitatory field potentials in the dentate gyrus of rats that are learning spatial relations by exploration. The altered(More)
New delivery methods are needed to improve the efficiency of existing DNA vaccines. We have measured the immune response to Mycobacterium tuberculosis antigens following intramuscular DNA injection in combination with or without electroporation. Three to 6-fold increase in the number of antigen specific CD4(+) and CD8(+) T cells, measured by(More)
We show that an electric treatment in the form of high-frequency, low-voltage electric pulses can increase more than 100-fold the production and secretion of a recombinant protein from mouse skeletal muscle. Therapeutical erythopoietin (EPO) levels were achieved in mice with a single injection of as little as 1 microgram of plasmid DNA, and the increase in(More)
Antibodies are useful for the treatment of a variety of diseases. We here demonstrate that mouse muscle produced monoclonal antibodies (mAb) after a single injection of immunoglobulin genes as plasmid DNA. In vivo electroporation of muscle greatly enhanced antibody production. For chimeric antibodies, levels of 50-200 ng mAb/ml serum were obtained but(More)
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate(More)
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was(More)
In vivo electroporation was utilised to enhance plasmid DNA expression in sheep muscle to improve the immune response to DNA vaccination. DNA encoding enhanced green fluorescence protein expressed at higher levels in sheep muscle following in vivo electroporation which caused minimal muscle damage. Groups of seven sheep were then given three intramuscular(More)
We are evaluating the use of electroporation (EP) to deliver a novel DNA vaccine, p.DOM-PSMA(27). This vaccine encodes a domain (DOM) of fragment C of tetanus toxin to induce CD4(+) T cell help, fused to a tumor-derived epitope from prostate-specific membrane antigen (PSMA) for use in HLA-A2(+) patients with recurrent prostate cancer. We report on safety(More)
Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to(More)
In vivo electroporation (EP) has been shown to augment the immunogenicity of plasmid DNA vaccines, but its mechanism of action has not been fully characterized. In this study, we show that in vivo EP augmented cellular and humoral immune responses to a human immunodeficiency virus type 1 Env DNA vaccine in mice and allowed a 10-fold reduction in vaccine(More)