Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
Reseaux électriques planaires II
- Y. C. Verdière, I. Gitler, D. Vertigan
- Mathematics
- 1 December 1994
Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und… Expand
Ring graphs and complete intersection toric ideals
- I. Gitler, E. Reyes, R. Villarreal
- Computer Science, Mathematics
- Discret. Math.
- 30 March 2006
TLDR
Four-terminal reducibility and projective-planar wye-delta-wye-reducible graphs
- D. Archdeacon, C. Colbourn, I. Gitler, J. S. Provan
- Mathematics
- 1 February 2000
A graph is YΔY-reducible if it can be reduced to a vertex by a sequence of series-parallel reductions and YΔY-transformations. Terminals are distinguished vertices, that cannot be deleted by… Expand
Four-terminal reducibility and projective-planar wye-delta-wye-reducible graphs
- D. Archdeacon, C. Colbourn, I. Gitler, J. S. Provan
- Computer Science
- J. Graph Theory
- 2000
TLDR
Bounds For Invariants of Edge-Rings
- I. Gitler, C. E. Valencia
- Mathematics
- 1 April 2005
ABSTRACT Let G be a simple graph with |V(G)| = n and no isolated vertices. Let α be its stability number. We study invariants of the edge-ring of G that can be interpreted as invariants of G. If G… Expand
A Note on Rees Algebras and the MFMC Property
- I. Gitler, C. E. Valencia, R. Villarreal
- Mathematics
- 11 November 2005
We study irreducible representations of Rees cones and char- acterize the max-flow min-cut property of clutters in terms of the nor- mality of Rees algebras and the integrality of certain polyhedra.… Expand
The crossing number of a projective graph is quadratic in the face-width
- I. Gitler, P. Hliněný, J. Leaños, G. Salazar
- Mathematics, Computer Science
- Electron. Notes Discret. Math.
- 15 August 2007
TLDR
On terminal delta-wye reducibility of planar graphs
TLDR
Blowup algebras of square-free monomial ideals and some links to combinatorial optimization problems
- I. Gitler, E. Reyes, R. Villarreal
- Mathematics
- 21 September 2006
Let I = (x v 1 , . . . , x v q ) be a square-free monomial ideal of a polynomial ring K[x1, . . . , xn] over an arbitrary field K and let A be the incidence matrix with column vectors v1, . . . , vq.… Expand
...
1
2
3
4
5
...