Learn More
Activity-dependent plasticity is a fundamental feature of most CNS synapses and is thought to be a synaptic correlate of memory in rodents. In humans, NMDA receptors have been linked to verbal memory processes, but it is unclear whether NMDA receptor-dependent synaptic plasticity can be recruited for information storage in the human CNS. Here we have for(More)
Activity-dependent synaptic plasticity is a fundamental feature of CNS synapses. Intriguingly, the capacity of synapses to express plastic changes is itself subject to considerable activity-dependent variation, or metaplasticity. These forms of higher order plasticity are important because they may be crucial to maintain synapses within a dynamic functional(More)
Mitochondria provide the main neuronal energy supply and are important organelles for the sequestration of intracellular Ca2+. This indicates a possible important role for mitochondria in modulating neuronal excitability in normal function as well as in disease. Therefore, we have investigated mitochondrial oxidative phosphorylation in the kainate model of(More)
  • 1