We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Z-type barium hexaferrite particles were synthesized by a one-step mixing-calcination process (MCP) and its magnetic properties were characterized and compared to the sol-gel (SGP) and the conventional ceramic (CCP) processed Z-type Ba hexaferrite with two-step calcination. We have used 71.2% pure M-type (BaFe<sub>12</sub>O<sub>19</sub>) and 83.8% pure(More)
A combination of energetic shake-milling and a subsequent double sintering process was employed to synthesize Co<sub>0.8</sub>Zn<sub>1.2 </sub>Z (Ba<sub>3</sub>Co<sub>0.8</sub>Zn<sub>1.2</sub>Fe<sub>24</sub>O <sub>41</sub>) hexaferrite nanoparticles with a high-saturation magnetization and a low coercivity. A homogeneous mixture of BaCO<sub>3 </sub>, CoO,(More)
Magnetic recording media requires good particle dispersion, a smooth surface, and small interparticle interaction to make an adequate signal-to-noise ratio (SNR). Well dispersed 50-60 nm sized spherical barium-strontium ferrite (S-Ba/Sr-Fe) nanoparticles were successfully prepared with 40 nm sized hematite precursor particles and BaCO/sub 3//SrCO/sub 3/(More)
  • 1