Learn More
Microtubules are dynamically unstable polymers that interconvert stochastically between polymerization and depolymerization. Compared with microtubules assembled from purified tubulin, microtubules in a physiological environment polymerize faster and transit more frequently between polymerization and depolymerization. These dynamic properties are essential(More)
XMAP215 belongs to a family of proteins involved in the regulation of microtubule dynamics. In this study we analyze the function of different parts of XMAP215 in vivo and in Xenopus egg extracts. XMAP215 has been divided into three fragments, FrN, FrM and FrC (for N-terminal, middle and C-terminal, respectively). FrN co-localizes with microtubules in egg(More)
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are(More)
Microtubules are dynamically unstable polymers that interconvert stochastically between growing and shrinking states by the addition and loss of subunits from their ends. However, there is little experimental data on the relationship between microtubule end structure and the regulation of dynamic instability. To investigate this relationship, we have(More)
BACKGROUND The antimitotic agent taxol is an important new drug for the treatment of certain cancers. It blocks the cell cycle in its G1 or M phases by stabilizing the microtubule cytoskeleton against depolymerization. RESULTS We have used electron cryomicroscopy and image analysis to investigate the structure of microtubules assembled in vitro, and found(More)
BACKGROUND Kinesins are a superfamily of motor proteins that use ATP hydrolysis to fuel movement along microtubules and participate in many crucial phases of the eukaryotic cell cycle. Usually these motors are heterotetramers of two heavy and two light chains, and have globular motor domains on the two heavy chains. Most kinesins move towards the(More)
We have used cryoelectron microscopy to try to understand the structural basis for the role of GTP hydrolysis in destabilizing the microtubule lattice. We have measured a structural difference introduced into microtubules by replacing GTP with guanylyl-(alpha,beta)-methylene-diphosphonate (GMPCPP). In a stable GMPCPP microtubule lattice, the moiré patterns(More)
BACKGROUND CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS We used(More)
Translationally controlled tumor-associated protein (TCTP) is a ubiquitous and highly conserved protein implicated in cancers. Here, we demonstrate that interactions of TCTP with microtubules (MTs) are functionally important but indirect, and we reveal novel interaction of TCTP with the actin cytoskeleton. Firstly, immunofluorescence in Xenopus XL2 cells(More)
Tau is a microtubule-associated protein well known for its stabilization of microtubules in axons. Recently, it has emerged that tau participates in synaptic function as part of the molecular pathway leading to amyloid-beta (Aβ)-driven synaptotoxicity in the context of Alzheimer's disease. Here, we report the implication of tau in the profound functional(More)