• Citations Per Year
Learn More
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons(More)
J. Aclander, J. Alster, G. Asryan,* Y. Averiche, D. S. Barton, V. Baturin, N. Buktoyarova, G. Bunce, A. S. Carroll, N. Christensen, H. Courant, S. Durrant, G. Fang, K. Gabriel, S. Gushue, K. J. Heller, S. Heppelmann, I. Kosonovsky, A. Leksanov, Y. I. Makdisi, A. Malki, I. Mardor, Y. Mardor, M. L. Marshak, D. Martel, E. Minina, E. Minor, I. Navon, H.(More)
w 2 Ž .2 x 12 Ž . We measured the high-momentum transfer Q s4.8 and 6.2 GeVrc quasi-elastic C p,2p reaction at u ,908 for cm 6 and 7.5 GeVrc incident protons. The momentum components of both outgoing protons and the missing energy and momentum of the proton in the nucleus were measured. We verified the validity of the quasi-elastic picture for ground state(More)
A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the (7)Li(p,n)(7)Be reaction for nuclear(More)
The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (~2 × 10(10) n/s having a peak energy of ~27 keV) from the (7)Li(p,n)(7)Be reaction were detected with a fission-chamber detector and by gold activation(More)
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron(More)
  • 1