Learn More
During the past decade, research has yielded new knowledge about the plant and insect host ranges, geographical distribution, and phylogenetic relationships of phytoplasmas, and a taxonomic system has emerged in which distinct phytoplasmas are named as separate "Candidatus phytoplasma species." In large part, this progress has resulted from the development(More)
Phytoplasmas are cell wall-less bacteria that cause numerous plant diseases. As no phytoplasma has been cultured in cell-free medium, phytoplasmas cannot be differentiated and classified by the traditional methods which are applied to culturable prokaryotes. Over the past decade, the establishment of a phytoplasma classification scheme based on 16S rRNA(More)
Phytoplasmas, the causal agents of numerous plant diseases, are insect-vector-transmitted, cell-wall-less bacteria descended from ancestral low-G+C-content Gram-positive bacteria in the Bacillus-Clostridium group. Despite their monophyletic origin, widely divergent phytoplasma lineages have evolved in adaptation to specific ecological niches. Classification(More)
Aster yellows (AY) group (16SrI) phytoplasmas are associated with over 100 economically important diseases worldwide and represent the most diverse and widespread phytoplasma group. Strains that belong to the AY group form a phylogenetically discrete subclade within the phytoplasma clade and are related most closely to the stolbur phytoplasma subclade,(More)
Elm yellows group (16SrV) phytoplasmas, which are associated with devastating diseases in elm, grapevine, blackberry, cherry, peach and several other plant species in America, Europe and Asia, represent one of the most diverse phytoplasma clusters. On the basis of phylogenetic analysis of 16S rDNA sequences, elm yellows group phytoplasmas form a discrete(More)
Extensive phylogenetic analyses were performed based on sequences of the 16S rRNA gene and two ribosomal protein (rp) genes, rplV (rpl22) and rpsC (rps3), from 46 phytoplasma strains representing 12 phytoplasma 16Sr groups, 16 other mollicutes and 28 Gram-positive walled bacteria. The phylogenetic tree inferred from rp genes had a similar overall topology(More)
A global phylogenetic analysis using parsimony of 16S rRNA gene sequences from 46 mollicutes, 19 mycoplasmalike organisms (MLOs) (new trivial name, phytoplasmas), and several related bacteria placed the MLOs definitively among the members of the class Mollicutes and revealed that MLOs form a large discrete monophyletic clade, paraphyletic to the(More)
Seventy phytoplasma isolates, including 10 previously characterized reference strains, of the aster yellows group were examined by RFLP analysis of PCR-amplified rDNA and RFLP and sequence analysis of the tuf gene. On the basis of rDNA restriction profiles, seven previously proposed 16S rDNA subgroups (16SrI-A, -B, -C, -D, -E, -F and -K) were recognized in(More)
The secY gene sequence is more variable than that of the 16S rRNA gene. Comparative phylogenetic analyses with 16S rRNA and secY gene sequences from 80 and 83 phytoplasma strains, respectively, were performed to assess the efficacy of these sequences for delineating phytoplasma strains within each 16Sr group. The phylogenetic interrelatedness among(More)
A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized:(More)