I. Lorena Arancibia-Carcamo

Learn More
Energy use, mainly to reverse ion movements in neurons, is a fundamental constraint on brain information processing. Trafficking of mitochondria to locations in neurons where there are large ion fluxes is essential for powering neural function. Mitochondrial trafficking is regulated by Ca2+ entry through ionotropic glutamate receptors, but the underlying(More)
The efficacy of synaptic inhibition depends on the number of gamma-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif(More)
The regulation of the number of gamma2-subunit-containing GABA(A) receptors (GABA(A)Rs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface(More)
GABA(A) receptors mediate the majority of fast synaptic inhibition in the mammalian central nervous system. GABA(A) receptors associate with a number of cytosolic proteins important for regulating their function including the GABA(A) receptor gamma2 subunit associated protein GABARAP. Here we show GABARAP associates with the synaptic PDZ domain containing(More)
The density of GABA(A) receptors (GABA(A)Rs) at synapses regulates brain excitability, and altered inhibition may contribute to Huntington's disease, which is caused by a polyglutamine repeat in the protein huntingtin. However, the machinery that delivers GABA(A)Rs to synapses is unknown. We demonstrate that GABA(A)Rs are trafficked to synapses by the(More)
Modification of the number of GABA(A) receptors (GABA(A)Rs) clustered at inhibitory synapses can regulate inhibitory synapse strength with important implications for information processing and nervous system plasticity and pathology. Currently, however, the mechanisms that regulate the number of GABA(A)Rs at synapses remain poorly understood. By imaging(More)
Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte(More)
It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport(More)
The number of surface and synaptic GABA(A) receptors is an important determinant of inhibitory synapse strength. Surface receptor number is in part controlled by removal of receptors from the membrane by interaction with the clathrin adaptor AP2. Here we demonstrate that there are two binding sites for AP2 in the gamma2-subunit: a Yxxvarphi type motif(More)
The regulation of the number of ␥2-subunit-containing GABAA receptors (GABAARs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface(More)