Learn More
There has been a recent paradigm shift in the computer animation industry with an increasing use of pre-recorded motion for animating virtual characters. A fundamental requirement to using motion capture data is an efficient method for indexing and retrieving motions. In this paper, we propose a flexible, efficient method for searching arbitrarily complex(More)
Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in(More)
We introduce a novel microfluidic device for cell sorting in continuous flow using tunable standing surface acoustic waves. This method allows individual cells to be precisely directed into five different outlet channels in a single step. It is versatile, simple, label-free, non-invasive, and highly controllable.
Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric(More)
We have developed a planar, optofluidic Mach-Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector(More)
We conduct a real-time study of all-optical modulation of localized surface plasmon resonance (LSPR) coupling in a hybrid system that integrates a photo-switchable optical grating with a gold nanodisk array. This hybrid system enables us to investigate two important interactions: 1) LSPR-enhanced grating diffraction, and 2) diffraction-mediated LSPR in the(More)
Graphene, which has a linear electronic band structure, is widely considered as a semimetal. In the present study, we combine graphene with conventional metallic surface-enhanced Raman scattering (SERS) substrates to achieve higher sensitivity of SERS detection. We synthesize high-quality, single-layer graphene sheets by chemical vapor deposition (CVD) and(More)
We present a detailed comparison of surface-enhanced Raman spectroscopy (SERS) signals from metallic nanoparticle arrays and their complementary hole arrays. Using an analytical model for local field enhancement, we show that the SERS enhancements of the hole arrays are closely related to their transmission spectra. This trend is experimentally confirmed(More)
Dance is a dynamic art form that reflects a wide range of cultural diversity and individuality. With the advancement of motion-capture technology combined with crowd-sourcing and machine learning algorithms, we explore the complex relationship between perceived dance quality/dancer's gender and dance movements/music respectively. As a feasibility study, we(More)
  • 1