Learn More
New SDIRKN methods specially adapted to the numerical integration of second-order stiff ODE systems with periodic solutions are obtained. Our interest is focused on the dispersion (phase errors) of the dominant components in the numerical oscillations when these methods are applied to the homogeneous linear test model. Based on this homogeneous test model(More)
New symmetric DIRK methods specially adapted to the numerical integration of first-order stiff ODE systems with periodic solutions are obtained. Our interest is focused on the dispersion (phase errors) of the dominant components in the numerical oscillations when these methods are applied to the homogeneous linear test model. Based on this homogeneous test(More)
P. P. Povinec,1,a M. K. Pham,1 J. A. Sanchez-Cabeza,1 G. Barci-Funel,2 R. Bojanowski,3 T. Boshkova,4 W. C. Burnett,5 F. Carvalho,6 B. Chapeyron,7 I. L. Cunha,8 H. Dahlgaard,9,b N. Galabov,10 L. K. Fifield,11 J. Gastaud,1 J.-J. Geering,12 I. F. Gomez,13 N. Green,14 T. Hamilton,15 F. L. Ibanez,16 M. Ibn Majah,17 M. John,18 G. Kanisch,19 T. C. Kenna,20 M.(More)
Professor Themistocles M. Rassias’ special predilection and contribution to the study of Möbius transformations is well known. Möbius transformations of the open unit disc of the complex plane and, more generally, of the open unit ball of any real inner product space, give rise to Möbius addition in the ball. The latter, in turn, gives rise to Möbius(More)