• Citations Per Year
Learn More
Fluorescent semiconducting polymer dots (Pdots) have attracted great interest because of their superior characteristics as fluorescent probes, such as high fluorescence brightness, fast radiative rates, and excellent photostability. However, currently available Pdots generally exhibit broad emission spectra, which significantly limit their usefulness in(More)
Semiconducting polymer dots (Pdots) recently have emerged as a new class of ultrabright fluorescent probes with promising applications in biological detection and imaging. We developed photoswitchable Pdots by conjugating photochromic spiropyran molecules onto poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1'-3}-thiadiazole)] (PFBT). The modulation of(More)
This communication describes a new class of semiconducting polymer nanoparticle-quantum dot hybrid with high brightness, narrow emission, near-IR fluorescence, and excellent cellular targeting capability. Using this approach, we circumvented the current difficulty with obtaining narrow-band-emitting and near-IR-fluorescing semiconducting polymer(More)
This article describes the design and development of squaraine-based semiconducting polymer dots (Pdots) that show large Stokes shifts and narrow-band emissions in the near-infrared (NIR) region. Fluorescent copolymers containing fluorene and squaraine units were synthesized and used as precursors for preparing the Pdots, where exciton diffusion and likely(More)
A record high PCE of up to 3.2% demonstrates that the efficiency of hybrid solar cells (HSCs) can be boosted by utilizing a unique mono-aniline end group of PSBTBT-NH(2) as a strong anchor to attach to CdTe nanocrystal surfaces and by simultaneously exploiting benzene-1,3-dithiol solvent-vapor annealing to improve the charge separation at the donor/acceptor(More)
A facile cross-linking strategy covalently links functional molecules to semiconducting polymer dots (Pdots) while simultaneously providing functional groups for biomolecular conjugation. In addition to greatly enhanced stability, the formed Pdots are small (<10 nm), which can be difficult to achieve with current methods but is highly desirable for most(More)
The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical 'painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and(More)
This paper describes a synthetic approach for photocrosslinkable polyfluorene (pc-PFO) semiconducting polymer dots, and demonstrates their superior ability to crosslink and form 3-D intermolecular polymer networks. The crosslinked pc-PFO Pdots are equipped with excellent encapsulating ability of functional small molecules. Optimum conditions of light(More)