Learn More
The superconducting transition temperature T(c) of bilayers comprising underdoped La(2-x)Sr(x)CuO(4) films capped by a thin heavily overdoped metallic La(1.65)Sr(0.35)CuO(4) layer, is found to increase with respect to T(c) of the bare underdoped films. The highest T(c) is achieved for x=0.12, close to the "anomalous" 1/8 doping level, and exceeds that of(More)
Scanning tunneling spectroscopy of (110)YBa(2)Cu(3)O(7-delta)/Au bilayers reveal a proximity effect markedly different from the conventional one. While proximity-induced mini-gaps rarely appear in the Au layer, the Andreev bound states clearly penetrate into the metal. Zero bias conductance peaks are measured on Au layers thinner than 7 nm with a magnitude(More)
The temperature evolution of the proximity effect in Au/La(2-x)Sr(x)CuO(4) and La(1.55)Sr(0.45)CuO(4)/La(2-x)Sr(x)CuO(4) bilayers was investigated using scanning tunneling microscopy. Proximity-induced gaps, centered at the chemical potential, were found to persist above the superconducting transition temperature, T(c), and up to nearly the pseudogap(More)
Scanning tunneling spectroscopy on gold layers overcoating c-axis YBa(2)Cu(3)O(7-delta) (YBCO) films reveals proximity-induced gap structures. The gap size reduces exponentially with the distance from a-axis facets, indicating that the proximity effect is primarily due to the (100) YBCO facets. The penetration depth of superconductivity into the gold is(More)
  • 1