Learn More
A new scheme for plasma electron injection into an acceleration phase of a plasma wake field is presented. In this scheme, a single, short electron pulse travels through an underdense plasma with a sharp, localized, downward density transition. Near this transition, a number of background plasma electrons are trapped in the plasma wake field, due to the(More)
We report a new simple method for the signal enhancement of laser-induced breakdown spectroscopy using a pulsed buffer gas jet. The signal is enhanced up to more than 10 fold by using argon gas jets, which are injected through a pulsed nozzle onto the sample area to be analyzed. By synchronizing the buffer gas pulse with the laser pulse and optimizing the(More)
We augment the usual three-wave cold-fluid equations governing Raman backscatter (RBS) with a new kinetic thermal correction, proportional to an average of particle kinetic energy weighted by the ponderomotive phase. From closed-form analysis within a homogeneous kinetic three-wave model and ponderomotively averaged kinetic simulations in a more realistic(More)
For controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we propose using a solid nanofilm illuminated normally by an ultraintense femtosecond laser pulse having a sharp rising edge. With two-dimensional (2D) particle-in-cell (PIC) simulations, we show that, in(More)
For controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we proposed [V. V. Kulagin, Phys. Rev. Lett. 99, 124801 (2007)] to use a solid nanofilm illuminated normally by an ultraintense femtosecond laser pulse having a sharp rising edge (nonadiabatic laser pulse).(More)
It is known that as a laser wakefield passes through a downward density transition in a plasma some portion of the background electrons are trapped in the laser wakefield and the trapped electrons are accelerated to relativistic high energies over a very short distance. In this study, by using a two-dimensional (2D) particle-in-cell (PIC) simulation, we(More)
A relativistic electron bunch with a large charge (>2 nC) was produced from a self-modulated laser wakefield acceleration configuration. For this experiment, an intense laser beam with a peak power of 2 TW and a duration of 700 fs was focused in a supersonic He gas jet, and relativistic high-energy electrons were observed from the strong laser-plasma(More)
The density-tapered plasmas have been considered as a key source to overcome the dephasing problem, which is a very important energy saturation mechanism in laser wakefield acceleration (LWFA). In the most researches, the tapered plasma density is used after electron injection, but when no electron trapping happens, it may also support the high energy(More)