Hyunuk Jung

Learn More
This paper concerns automatic hardware synthesis from data flow graph (DFG) specification in system level design. In the presented design methodology, each node of a data flow graph represents a hardware library module that contains a synthesizable VHDL code. Our proposed technique automatically synthesizes a clever control structure, cascaded counter(More)
This paper concerns automatic hardware synthesis from data flow graph (DFG) specification for fast HW/SW cosynthesis. A node in DFG represents a coarse grain block such as FIR and DCT and a port in a block may consume multiple data samples per invocation, which distinguishes our approach from behavioral synthesis and complicates the problem. In the(More)
Model-based design is widely accepted in developing complex embedded system under intense time-to-market pressure. While it promises improved design productivity, the main bottleneck lies not in the design methodology but in constructing the initial algorithm representation in the specified model. It is particularly true if a complicated multimedia(More)
Model-based approach is widely adopted to develop embedded system to cope with the everincreasing complexity of system design under relentless time-to-market pressure. In this paper we present our experience of H.264 decoder algorithm specification and simulation with two model-based design environments, Simulink and PeaCE. Formal data-driven model of PeaCE(More)
This paper presents a new methodology of automatic RTL code generation from coarse-grain dataflow specification for fast HW/SW cosynthesis. A node in a coarse-grain dataflow specification represents a functional block such as FIR and DCT and an arc may deliver multiple data samples per block invocation, which complicates the problem and distinguishes it(More)
3D stacked DRAM improves peak memory performance. However, its effective performance is often limited by the constraints of row-to-row activation delay (tRRD), four active bank window (tFAW), etc. In this paper, we present a quantitative analysis of the performance impact of such constraints. In order to resolve the problem, we propose balancing the budget(More)
PURPOSE In proton therapy, collisions between the patient and nozzle potentially occur because of the large nozzle structure and efforts to minimize the air gap. Thus, software was developed to predict such collisions between the nozzle and patient using treatment virtual simulation. METHODS Three-dimensional (3D) modeling of a gantry inner-floor, nozzle,(More)
Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external(More)
  • 1