Learn More
RNA sequencing approaches to transcriptome analysis require a large amount of input total RNA to yield sufficient mRNA using either poly-A selection or depletion of rRNA. This feature makes it difficult to miniaturize transcriptome analysis for greater efficiency. To address this challenge, we devised and validated a simple procedure for the preparation of(More)
Cold stress is one of the major environmental factors limiting the amount of plant mass for bioenergy production. A chilling-sensitive Jatropha (Jatropha curcas L.) as a bioenergy crop was used to investigate the cold injury process at the physiological and biochemical levels. Various physiological parameters such as leaf length, width, stomatal(More)
Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space(More)
Correctly matching the HLA haplotypes of donor and recipient is essential to the success of allogenic hematopoietic stem cell transplantation. Current HLA typing methods rely on targeted testing of recognized antigens or sequences. Despite advances in Next Generation Sequencing, general high throughput transcriptome sequencing is currently underutilized for(More)
BACKGROUND The nCounter analysis system (NanoString Technologies, Seattle, WA) is a technology that enables the digital quantification of multiplexed target RNA molecules using color-coded molecular barcodes and single-molecule imaging. This system gives discrete counts of RNA transcripts and is capable of providing a high level of precision and sensitivity(More)
OBJECTIVES The relationship between HCV genotype and the development of more serious liver disease has not been clearly established. This study was to investigate the distribution pattern of HCV genotypes in Korea and their relationship to the viremic level and to progression of chronic liver disease. METHODS Study population was 217 patients with type C(More)
Camelina sativa L. is an oilseed crop used as a potential low-cost biofuel resource. Despite the economic and agricultural benefits of this crop, studies demonstrating the physiological and genetic response of camelina to changing environmental conditions are limited. In this study, three stress-responsive glycine-rich RNA-binding proteins (GRPs) in(More)
Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the(More)
Camelina sativa L. is an emerging biodiesel crop with exceptional cold tolerance. We isolated two small hydrophobic proteins, CsRCI2A and CsRCI2E (rare cold inducible), from Camelina. The proteins displayed high homology with RCI2-related proteins from various species. CsRCI2A contained only two trans-membrane domains but CsRCI2E possessed both(More)
We use a microfabricated ecology with a doxorubicin gradient and population fragmentation to produce a strong Darwinian selective pressure that drives forward the rapid emergence of doxorubicin resistance in multiple myeloma (MM) cancer cells. RNA sequencing of the resistant cells was used to examine (i) emergence of genes with high de novo substitution(More)