Learn More
RNA sequencing approaches to transcriptome analysis require a large amount of input total RNA to yield sufficient mRNA using either poly-A selection or depletion of rRNA. This feature makes it difficult to miniaturize transcriptome analysis for greater efficiency. To address this challenge, we devised and validated a simple procedure for the preparation of(More)
Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space(More)
The emergence of bacterial antibiotic resistance is a growing problem, yet the variables that influence the rate of emergence of resistance are not well understood. In a microfluidic device designed to mimic naturally occurring bacterial niches, resistance of Escherichia coli to the antibiotic ciprofloxacin developed within 10 hours. Resistance emerged with(More)
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic(More)
BACKGROUND The nCounter analysis system (NanoString Technologies, Seattle, WA) is a technology that enables the digital quantification of multiplexed target RNA molecules using color-coded molecular barcodes and single-molecule imaging. This system gives discrete counts of RNA transcripts and is capable of providing a high level of precision and sensitivity(More)
Correctly matching the HLA haplotypes of donor and recipient is essential to the success of allogenic hematopoietic stem cell transplantation. Current HLA typing methods rely on targeted testing of recognized antigens or sequences. Despite advances in Next Generation Sequencing, general high throughput transcriptome sequencing is currently underutilized for(More)
Correctly matching the HLA haplotypes of donor and recipient is essential to the success of allogenic hematopoietic stem cell transplantation. Current HLA typing methods rely on targeted testing of recognized antigens or sequences. Despite advances in Next Generation Sequencing, general high throughput transcriptome sequencing is currently underutilized for(More)
Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the(More)
We use a microfabricated ecology with a doxorubicin gradient and population fragmentation to produce a strong Darwinian selective pressure that drives forward the rapid emergence of doxorubicin resistance in multiple myeloma (MM) cancer cells. RNA sequencing of the resistant cells was used to examine (i) emergence of genes with high de novo substitution(More)
Do genetically closely related organisms under identical, but strong selection pressure converge to a common resistant genotype or will they diverge to different genomic solutions? This question gets at the heart of how rough is the fitness landscape in the local vicinity of two closely related strains under stress. We chose a Growth Advantage in Stationary(More)