Hyungsik Lim

Learn More
Optical frequency domain imaging (OFDI) using swept laser sources is an emerging second-generation method for optical coherence tomography (OCT). Despite the widespread use of conventional OCT for retinal disease diagnostics, until now imaging the posterior eye segment with OFDI has not been possible. Here we report the development of a highperformance(More)
We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution(More)
Broadband light generation from a single-mode optical fiber was developed for high-resolution optical coherence tomography (OCT). No noise amplification was observed for light broadened by self-phase modulation. The investigation showed that the intensity noise of light broadened by self-phase modulation in a single-mode optical fiber was much lower than(More)
We show that useful non-instantaneous nonlinear phase shifts can be obtained from cascaded quadratic processes in the presence of group velocity mismatch. The two-field nature of the process permits responses that can be effectively advanced or retarded in time with respect to one of the fields. There is an analogy to a generalized Raman-scattering effect,(More)
We demonstrate an environmentally-stable mode-locked ytterbium fiber laser. The large birefringence of hollow-core photonic bandgap fiber allows it to control polarization in the laser while it provides the anomalous dispersion necessary for stretched-pulse operation. The laser generates 1-nJ pulses, which are dechirped to 70 fs.
  • 1