Hyunglae Lee

Learn More
This article presents preliminary stochastic estimates of the multi-variable human ankle mechanical impedance. We employed Anklebot, a rehabilitation robot for the ankle, to provide torque perturbations. Time histories of the torques in Dorsi-Plantar flexion (DP) and Inversion-Eversion (IE) directions and the associated angles of the ankle were recorded.(More)
Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of(More)
This paper reports quantification of multivariable static ankle mechanical impedance when muscles were active. Repetitive measurements using a highly backdrivable therapeutic robot combined with robust function approximation methods enabled reliable characterization of the nonlinear torque-angle relation at the ankle in two coupled degrees of freedom(More)
This article compares stochastic estimates of multi-variable human ankle mechanical impedance when ankle muscles were fully relaxed, actively generating ankle torque or co-contracting antagonistically. We employed Anklebot, a rehabilitation robot for the ankle, to provide torque perturbations. Muscle activation levels were monitored electromyographically(More)
In human locomotion, we continuously modulate joint mechanical impedance of the lower limb (hip, knee, and ankle) either voluntarily or reflexively to accommodate environmental changes and maintain stable interaction. Ankle mechanical impedance plays a pivotal role at the interface between the neuro-mechanical system and the physical world. This paper(More)
This paper presents a novel method to characterize mechanical impedance of a human joint. We employed a non-parametric stochastic identification method and an interactive robot. This method allows us to determine several important properties including a) joint impedance in the direction of the joint principal axes, b) the spatial joint impedance structure,(More)
Because the dynamics of wrist rotations are dominated by stiffness, understanding wrist rotations requires a thorough characterization of wrist stiffness in multiple degrees of freedom. The only prior measurement of multivariable wrist stiffness was confined to approximately one-seventh of the wrist range of motion (ROM). Here, we present a precise(More)
<i>Select-and-Point</i> provides us with a new interface and intuitive interaction style in our daily computer use. With simple selection and pointing hand gestures, users can eliminate cumbersome processes in managing connections and controls between multiple devices as well as in sharing information/data. We implemented a <i>Select-and-Point</i> system in(More)
Characterization of multi-variable ankle mechanical impedance is crucial to understanding how the ankle supports lower-extremity function during interaction with the environment. This paper reports quantification of steady-state ankle impedance when muscles were active. Vector field approximation of repetitive measurements of the torque-angle relation in(More)