Learn More
Thousands of novel transcripts have been identified using deep transcriptome sequencing. This discovery of large and 'hidden' transcriptome rejuvenates the demand for methods that can rapidly distinguish between coding and noncoding RNA. Here, we present a novel alignment-free method, Coding Potential Assessment Tool (CPAT), which rapidly recognizes coding(More)
Bisulfite sequencing (BS-seq) is the gold standard for studying genome-wide DNA methylation. We developed MOABS to increase the speed, accuracy, statistical power and biological relevance of BS-seq data analysis. MOABS detects differential methylation with 10-fold coverage at single-CpG resolution based on a Beta-Binomial hierarchical model and is capable(More)
Maximum likelihood has been widely used for over three decades to infer phylogenetic trees from molecular data. When reticulate evolutionary events occur, several genomic regions may have conflicting evolutionary histories, and a phylogenetic network may provide a more adequate model for representing the evolutionary history of the genomes or species. A(More)
BACKGROUND Maximum parsimony is one of the most commonly used criteria for reconstructing phylogenetic trees. Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems with this extension(More)
Phylogenetic analysis is used in all branches of biology with applications ranging from studies on the origin of human populations to investigations of the transmission patterns of HIV. Most phylogenetic analyses rely on effective heuristics for obtaining accurate trees. However, relatively little work has been done to analyze quantitatively the behavior of(More)
Mutations in the epigenetic modifiers DNMT3A and TET2 non-randomly co-occur in lymphoma and leukemia despite their epistasis in the methylation-hydroxymethylation pathway. Using Dnmt3a and Tet2 double-knockout mice in which the development of malignancy is accelerated, we show that the double-knockout methylome reflects regions of independent, competitive(More)
  • 1