Learn More
Lung CAD systems require the ability to classify a variety of pulmonary structures as part of the diagnostic process. The purpose of this work was to develop a methodology for fully automated voxel-by-voxel classification of airways, fissures, nodules, and vessels from chest CT images using a single feature set and classification method. Twenty-nine thin(More)
BACKGROUND Gastric cancer with bone marrow metastases is known to pursue a rapidly deteriorating clinical course. We conducted a retrospective analysis to evaluate clinical manifestations and prognosis of gastric cancer patients with bone marrow metastases. METHODS Between September 1994 and February 2006, 39 gastric cancer patients with pathologically(More)
PURPOSE To determine if apparent diffusion coefficient (ADC) histogram analysis can stratify progression-free survival in patients with recurrent glioblastoma multiforme (GBM) prior to bevacizumab treatment. MATERIALS AND METHODS The study was approved by the institutional review board and was HIPAA compliant; informed consent was obtained.(More)
Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human(More)
We have tested the predictive value of apparent diffusion coefficient (ADC) histogram analysis in stratifying progression-free survival (PFS) and overall survival (OS) in bevacizumab-treated patients with recurrent glioblastoma multiforme (GBM) from the multi-center BRAIN study. Available MRI's from patients enrolled in the BRAIN study (n = 97) were(More)
'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models(More)
Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this(More)
A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This(More)
Circadian rhythms, endogenously generated by the suprachiasmatic nucleus (SCN), can be synchronized to a variety of photic and non-photic environmental stimuli. Neuropeptide Y (NPY) is produced in the intergeniculate leaflet (IGL) and known to mediate both photic and non-photic influences on the SCN. We recently found that npy-/- mice were slower to shift(More)
Although NKT cells has been known to exert protective roles in the development of autoimmune diseases, the functional roles of NKT cells in the downstream events of antibody-induced joint inflammation remain unknown. Thus, we explored the functional roles of NKT cells in antibody-induced arthritis using the K/BxN serum transfer model. NKT cell-deficient(More)