Learn More
The oncogenic ability of aberrant hepatocyte growth factor receptor (Met) signaling is thought to mainly rely on its mitogenic and anti-apoptotic effects. Recently, however, cumulating evidences suggest that genomic instability may be a crucial factor in tumorigenesis. Here, we address whether oncogenic Met receptor is linked to the centrosome abnormality(More)
Wound healing requires re-epithelialization from the wound margin through keratinocyte proliferation and migration, and some growth factors are known to influence this process. In the present study, we found that the co-treatment with hepatocyte growth factor (HGF) and TGF-beta1 resulted in enhanced migration of HaCaT cells compared with either growth(More)
Growth factors accelerate G0 to S progression in the cell cycle, however, the roles of growth factors in other cell cycle phases are largely unknown. Here, we show that treatment of HeLa cells with hepatocyte growth factor (HGF) at G2 phase induced the G2/M transition delay as evidenced by FACS analysis as well as by mitotic index and time-lapse analyses.(More)
Aberrant activation of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, Met, is involved in the development and progression of many human cancers. In the cell-based screening assay, (-)epigallocatechin-3-gallate (EGCG) inhibited HGF/SF-Met signaling as indicated by its inhibitory activity on HGF/SF-induced cell scattering and uPA(More)
The p90 ribosomal S6 kinase family (RSK1-4) of Ser/Thr kinases is a downstream component of the Ras-MAPK cascade responsible for regulating various cellular processes. Here, we examined the potential involvement of RSKs in regulating mitosis by transfecting HeLa cells with siRNAs targeting RSK1 and -2, which are the major isoforms. Depletion of RSK1 but not(More)
RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the(More)
Hepatocyte growth factor (HGF) and its receptor, Met, regulate skeletal muscle differentiation. In the present study, we identified a novel alternatively spliced isoform of Met lacking exon 13 (designated Δ13Met), which is expressed mainly in human skeletal muscle. Alternative splicing yielded a truncated Met having extracellular domain only, suggesting an(More)
The effect of growth factors on the cell cycle progression, except G1/S transition, is poorly understood. Herein, we examined the effect of hepatocyte growth factor (HGF) treated at S phase on the cell cycle progression of HeLa cells. Interestingly, the treatment resulted in G2 delay, evidenced by flow cytometric and mitotic index analyses. The delay(More)
  • 1