Learn More
Lipin 1 is a bifunctional protein that regulates gene transcription and, as a Mg(2+)-dependent phosphatidic acid phosphatase (PAP), is a key enzyme in the biosynthesis of phospholipids and triacylglycerol. We describe here the functional interaction between lipin 1 and the nuclear factor of activated T cells c4 (NFATc4). Lipin 1 represses NFATc4(More)
Adiponectin is expressed in adipose tissue by adipogenic transcription factors including PPARgamma, C/EBPalpha, and ADD1/SREBP1c. Because cAMP-response element binding protein (CREB) is also a central transcriptional activator of adipocyte differentiation, we evaluated CREB to determine if it stimulates adiponectin gene expression. To accomplish this, we(More)
Expression of adiponectin decreases with obesity and insulin resistance. At present, the mechanisms responsible for negatively regulating adiponectin expression in adipocytes are poorly understood. In this investigation, we analyzed the effects of 5' serial deletion constructs on the murine adiponectin promoter. Here, we identified the repressor region(More)
Lipin family members (lipin 1, 2 and 3) are bi-functional proteins that dephosphorylate PA (phosphatidic acid) to produce DAG (diacylglycerol) and act in the nucleus to regulate gene expression. Although other components of the triacylglycerol synthesis pathway can form oligomeric complexes, it is unknown whether lipin proteins also exist as oligomers. In(More)
Global warming is increasing the variability of climate change and intensifying hydrologic cycle components including precipitation, infiltration, evapotranspiration, and runoff. These changes increase the chance of more severe and frequent natural conditions, and limit ecosystem function and human activities. Adaptation to climate change requires(More)
Aquatic ecosystems are threatened by increasing variability in the hydrologic responses. In particular, the health of river ecosystems in steeply sloping watersheds is aggravated due to soil erosion and stream depletion during dry periods. This study suggested and assessed a method to improve the adaptation ability of a river system in a steep watershed.(More)
In order to understand the role of the upstream region of the Mycobacterium leprae 18-kDa gene on the gene regulation, the region was divided into two at the -50 position from the first start codon of the gene and their effect on transcription was examined by using a LacZ transcriptional reporter gene assay. The presence of each of these two regions(More)
  • 1