Hyoung-Gon Ko

Learn More
Synaptic plasticity is a key mechanism for chronic pain. It occurs at different levels of the central nervous system, including spinal cord and cortex. Studies have mainly focused on signaling proteins that trigger these plastic changes, whereas few have addressed the maintenance of plastic changes related to chronic pain. We found that protein kinase M(More)
Phosphatidylinositol 3-kinase (PI3K) has been implicated in synaptic plasticity and other neural functions in the brain. However, the role of individual PI3K isoforms in the brain is unclear. We investigated the role of PI3Kγ in hippocampal-dependent synaptic plasticity and cognitive functions. We found that PI3Kγ has a crucial and specific role in NMDA(More)
A consolidated memory can be transiently destabilized by memory retrieval, after which memories are reconsolidated within a few hours; however, the molecular substrates underlying this destabilization process remain essentially unknown. Here we show that at lateral amygdala synapses, fear memory consolidation correlates with increased surface expression of(More)
Chronic pain can lead to anxiety and anxiety can enhance the sensation of pain. Unfortunately, little is known about the synaptic mechanisms that mediate these re-enforcing interactions. Here we characterized two forms of long-term potentiation (LTP) in the anterior cingulate cortex (ACC); a presynaptic form (pre-LTP) that requires kainate receptors and a(More)
Repeated pulses of serotonin (5-HT) induce long-term facilitation (LTF) of the synapses between sensory and motor neurons of the gill-withdrawal reflex in Aplysia. To explore how apCAM downregulation at the plasma membrane and CREB-mediated transcription in the nucleus, both of which are required for the formation of LTF, might relate to each other, we(More)
Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the(More)
Synaptic plasticity in the spinal cord and the cortex is believed to be important for the amplification of painful information in chronic pain conditions. The investigation of molecular mechanism responsible for maintaining injury-related plastic changes, such as through the study of long-term potentiation in these structures, provides potential novel(More)
Consistent evidence from pharmacological and genetic studies shows that cAMP is a critical modulator of synaptic plasticity and memory formation. However, the potential of the cAMP signaling pathway as a target for memory enhancement remains unclear because of contradictory findings from pharmacological and genetic approaches. To address these issues, we(More)
Recently, protein kinase M ζ (PKMζ) has emerged as an important player for maintaining memory. It has been reported that PKMζ regulates the trafficking of GluA2 in postsynaptic membranes to maintain memory. However, there has been no study on PKMζ outside the synaptic region regarding memory maintenance. Here, we found that PKMζ is transported to the(More)
BACKGROUND It is well known that antidepressants increase neurogenesis in the dentate gyrus of the hippocampus. The increase of neurogenesis might contribute to the behavioral effects of antidepressants. However, the mechanism by which antidepressants increase hippocampal neurogenesis is largely unknown. It has been recently reported that astroglia induce(More)