Hyota Takamatsu

Learn More
Semaphorins and their receptors have diverse functions in axon guidance, organogenesis, vascularization and/or angiogenesis, oncogenesis and regulation of immune responses. The primary receptors for semaphorins are members of the plexin family. In particular, plexin-A1, together with ligand-binding neuropilins, transduces repulsive axon guidance signals for(More)
Semaphorins are axon guidance factors that assist growing axons in finding appropriate targets and forming synapses. Emerging evidence suggests that semaphorins are involved not only in embryonic development but also in immune responses. Semaphorin 7A (Sema7A; also known as CD108), which is a glycosylphosphatidylinositol-anchored semaphorin, promotes axon(More)
Commissural axon guidance requires complex modulations of growth cone sensitivity to midline-derived cues, but underlying mechanisms in vertebrates remain largely unknown. By using combinations of ex vivo and in vivo approaches, we uncovered a molecular pathway controlling the gain of response to a midline repellent, Semaphorin3B (Sema3B). First, we provide(More)
Semaphorins and their receptors play crucial roles not only in axon guidance during neuronal development but also in the regulation of immune responses. Plexin-A4, a member of the plexin-A subfamily, forms a receptor complex with neuropilins and transduces signals for class III semaphorins in the nervous system. Although plexin-A4 is also expressed in the(More)
The recirculation of leukocytes is essential for proper immune responses. However, the molecular mechanisms that regulate the entry of leukocytes into the lymphatics remain unclear. Here we show that plexin-A1, a principal receptor component for class III and class VI semaphorins, was crucially involved in the entry of dendritic cells (DCs) into the(More)
Semaphorins are a family of secreted and membrane-bound proteins known as axonal pathfinders. Sema4A, a member of class 4 semaphorins, induces growth cone collapse of hippocampal neurons. The binding of Sema4A to growth cones indicates the presence of receptors transmitting signals through the intracellular effectors to induce growth cone collapse in(More)
Semaphorins were originally identified as axon guidance factors involved in the development of the neuronal system. However, accumulating evidence indicates that several semaphorins, so-called 'immune semaphorins', are crucially involved in various phases of both physiological and pathological immune responses; some regulate immune cell activation or(More)
The class IV semaphorin Sema4A provides a costimulatory signal to T cells. To investigate the possible developmental and regulatory roles of Sema4A in vivo, we generated Sema4A-deficient mice. Although Sema4A-deficient mice develop normally, DCs and T cells from knockout mice display poor allostimulatory activities and T helper cell (Th) differentiation,(More)
Although semaphorins were originally identified as axonal guidance molecules during neuronal development, it is emerging that several semaphorins play crucial roles in various phases of immune responses. Sema4D/CD100, a class IV semaphorin, has been shown to be involved in the nervous and immune systems through its receptors plexin-B1 and CD72,(More)
The cardiac neural crest, a subpopulation of the neural crest, contributes to the cardiac outflow tract formation during development. However, how it follows the defined long-range migratory pathway remains unclear. We show here that the migrating cardiac neural crest cells (NCCs) express Plexin-A2, Plexin-D1 and Neuropilin. The membrane-bound ligands for(More)