Hyosung Choi

Learn More
The interfacial dipolar polarization in inverted structure polymer solar cells, which arises spontaneously from the absorption of ethanolamine end groups, such as amine and hydroxyl groups on ripple-structure zinc oxide (ZnO-R), lowers the contact barrier for electron transport and extraction and leads to enhanced electron mobility, suppression of(More)
UNLABELLED Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further(More)
Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized(More)
We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active(More)
We investigate mixed solvents of N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL) to produce the smooth surface of a perovskite film and uniform crystal domains. This ideal morphology from mixed solvents enhances the power conversion efficiency to over 6% by improving the exciton dissociation efficiency and reducing the recombination loss at both(More)
Organic semiconductor-based optoelectronic devices, such as polymer solar cells (PSCs) and polymer light-emitting diodes (PLEDs), have attracted considerable attention because of their cost-effective, low-temperature, and solution-based fabrication over a large area; light weight; chemically tunable optoelectronic properties; and mechanical fl exibility. [(More)
Non-fullerene acceptors have recently attracted tremendous interest because of their potential as alternatives to fullerene derivatives in bulk heterojunction organic solar cells. However, the power conversion efficiencies (PCEs) have lagged far behind those of the polymer/fullerene system, mainly because of the low fill factor (FF) and photocurrent. Here(More)
We demonstrate a practical route to synthesize Ge nanoparticles (NPs) in multi-gram quantities via the laser pyrolysis of GeH4 gas. The size of the as-produced Ge NPs can be precisely controlled in the range of 19.0 to 65.9 nm via a subsequent etching procedure using a dilute H2O2 solution. Stable water dispersions of Ge NPs yield particles with a Ge/GeO2(More)
Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced(More)
A series of wide-bandgap (WBG) copolymers with different alkyl side chains are synthesized. Among them, copolymer PBT1-EH with moderatly bulky side chains on the acceptor unit shows the best photovoltaic performance with power conversion efficiency over 10%. The results suggest that the alkyl side-chain engineering is an effective strategy to further tuning(More)