Hyonchol Kim

Learn More
Neurofibrillary tangles (NFTs) are pathological hallmarks of several neurodegenerative disorders, including Alzheimer's disease (AD). NFTs are composed of microtubule-binding protein tau, which assembles to form paired helical filaments (PHFs) and straight filaments. Here we show by atomic force microscopy that AD brain tissue and in vitro tau form granular(More)
Analysis of specific gene expression in single living cells may become an important technique for cell biology. So far, no method has been available to detect mRNA in living cells without killing or destroying them. We have developed here a novel method to examine gene expression of living cells using an atomic force microscope (AFM). AFM tip was inserted(More)
One of the advantages of atomic force microscopy (AFM) is that it can accurately measure the heights of targets on flat substrates. It is difficult, however, to determine the shape of nanoparticles on rough surfaces. We therefore propose a curvature-reconstruction method that estimates the sizes of particles by fitting sphere curvatures acquired from raw(More)
Distribution of vitronectin (VN) receptors on a living murine osteoblastic cell was successfully measured by atomic force microscopy (AFM). First, the distribution of the integrin beta(5) subunit which constitutes a part of the VN receptor on the cell was confirmed by conventional immunohistochemistry after fixing the cell. To visualize the distribution of(More)
An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF) and fluorescent (FL) images at 200 frames per(More)
We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA)) based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing(More)
The distribution of EP3 receptors on a living cell surface was quantitatively studied by atomic force microscopy (AFM). Green fluorescent protein (GFP) was introduced to the extracellular region of the EP3 receptor on a CHO cell. A microbead was used as a probe to ensure certain contact area, whose surface was coated with anti-GFP antibody. The interactions(More)
We report the curvature size dependence of the density of attached single-stranded DNA (ssDNA) on the surface of gold nanoparticles. The densities of immobilized ssDNA on 10, 20, 30, and 50 nm gold nanoparticles were examined, and we found that the maximum density of the immobilized ssDNA on 10 nm particles was 13 times larger than that on 50 nm particles,(More)
To develop force measurements using an atomic force microscope (AFM) in a quantitative manner, it is necessary to estimate the number density of target molecules on a sample surface, and for this, the sensitivity of detection should be known. In this study, the AFM was used as a mechanical detector and an antigen and its antibody were used as a model to(More)