Learn More
We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA)) based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing(More)
An on-chip multi-imaging flow cytometry system has been developed to obtain morphometric parameters of cell clusters such as cell number, perimeter, total cross-sectional area, number of nuclei and size of clusters as "imaging biomarkers", with simultaneous acquisition and analysis of both bright-field (BF) and fluorescent (FL) images at 200 frames per(More)
A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the(More)
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting(More)
We propose a new method of size separation of cells exploiting precisely size-controlled hemispherical superparamagnetic microparticles. A three-layered structure of a 2-nm nickel layer inserted between 15-nm silicon dioxide layers was formed on polystyrene cast spheres by vapor deposition. The polystyrene was then removed by burning and the hemispherical(More)
  • 1