Learn More
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells(More)
We developed a new microfluidic method for focusing microparticles through the combined use of inertial lift forces and turbulent secondary flows generated in a topographically patterned microchannel. The mechanism of particle focusing is based on the hydrodynamic inertial forces exerted on particles migrating along a non-circular microchannel, i.e.tubular(More)
The dissemination of circulating tumor cells (CTCs) requires the Epithelial-to-Mesenchymal transition (EMT), in which cells lose their epithelial characteristics and acquire more mesenchymal-like phenotypes. Current isolation of CTCs relies on affinity-based approaches reliant on the expression of Epithelial Cell Adhesion Molecule (EpCAM). Here we show(More)
A novel optical detection method for hemoglobin concentration is described. The hemoglobin molecules consisting mainly of iron generate heat upon their absorption of light energy at 532 nm, which subsequently changes the refractive index of the blood. We exploit this photothermal effect to determine the hemoglobin concentration of erythrocytes without any(More)
We have investigated whether arachidonic acid could regulate tissue transglutaminase (tTGase) via intracellular reactive oxygen species (ROS) in NIH3T3 cells. tTGase was identified in NIH3T3 cells by Western blot and confocal microscopy. Arachidonic acid elevated in situ tTGase activity in dose- and time-dependent manners with a maximal level at 1h, and ROS(More)
Circulating tumor cells (CTCs) are defined as cells that have detached from a primary tumor and are circulating in the bloodstream. Their isolation and quantification is of great value for cancer prognoses and drug testing. Here, the development of a centrifugal affinity plate (CAP) system is described, in which centrifugal force and antibody-based capture(More)
Much research has been performed over the past several decades in an attempt to conquer cancer. Tissue biopsy is the conventional method for gathering biological materials to analyze cancer and has contributed greatly to the understanding of cancer. However, this method is limited because it is time-consuming (requires tissue sectioning, staining, and(More)
Airborne microbes such as fungi, bacteria, and viruses are a threat to public health. Robust and real-time detection systems are necessary to prevent and control such dangerous biological particles in public places and dwellings. For direct and real-time detection of airborne microbes, samples must be collected and typically resuspended in liquid prior to(More)
Over the past two decades, circulating tumor cells (CTCs) have been widely recognized for their importance in clinical trials. While most enrichment methods for these cells have been conducted through the batch process due to their rarity in blood and the need for large sample volumes, the batch process leads to unavoidable cell loss. Given the(More)
Circulating tumor cells (CTCs) have attracted a great deal of attention, as they can be exploited to investigate metastasis. The molecular and cellular characteristics of these cells are little understood because they are rare and difficult to isolate. Many methods of isolation have centered on affinity-based positive enrichment (i.e., capturing target(More)